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README

The long term goal of this package is to bridge the data between DFT results, either in its original format or those save in MongoDB database, and the other simulations, for example, the phase-field simualtion of phase transition due to electronic structure change, typically, the metal insulator transition (MIT).

The above figure shows a schematic demonstration of the technical procedure for the data flow of the package. This package was mainly implemented through the combination of several distinct approaches for accounting the roles of electrons and lattice vibrations:


	the kinetic properties by means of solving the Boltzmann transport equation. The code was mainly based on forking the BoltzTraP2 [https://gitlab.com/sousaw/BoltzTraP2] by @georg.madsen et al. The major changes include the separation of the electron and hole contributions, in addition to technical improvements on the calculations of the chemical potential of electrons which makes it more efficient for calculation at low temperature that requires extremely refined meshes on electron energy.


	the thermodynamic properties of electrons involving the mixing between two phases per our recent observations that certain eletron transfer related quantities, including:





	the Seebeck coefficient - First-principles thermodynamic theory of Seebeck coefficients [https://doi.org/10.1103/PhysRevB.98.224101]; and


	the Lorenz number - Lorenz Number and Electronic Thermoelectric Figure of Merit: Thermodynamics and Direct DFT Calculations [https://arxiv.org/abs/2010.00664]




which were thought to be dependent on the scattering mechanism and therefore can only be calcullated through the kinetic manner such as the Boltzmann transport equation, are in fact thermodynamic parameters and therefore can be predicted solely based on the electron density of states.


	Our development for a package for the automation of first-principles calculations of thermodynamic properties of materials at finite temperature employing the quasi-hamonic phonon approach, as given in a separate documentaton (www.dfttk.org)




For more details, see the secction Penn State’s work.


Quick run instruction


	perform DFT calculations for, including
a. 0-K electron energetics. These data contain the lattice structure, 0-K total energy, electronic density of states, electron energies in each k-mesh.
b. interatomic force constants through supercell or linear response approach. These data will be used to calculate the lattice contribution to the thermodynamic properties.


	invoke the BoltzTrap2Y package to calculate the kinetic/thermodynamic properties based on 0-K DFT results


	when needed, invoke DFTTK to postprocess the interatomic force constants to get lattice contribution to the thermodynamic properties.


	convert the data calculated by BoltzTrap2Y/DFTTK into the input to phase field simulation







Run using Jupyter Notebook

To make ease of the package, we have prepared an extensive jupyter notebook script (which assumes that the step of DFT calculations have been completed) which can be excuted by the following steps


	clicking the link BoltzTrap2Y.ipynb [https://gitlab.com/yiwang62/BoltzTraP2/-/blob/20210126/BoltzTrap2Y.ipynb] followed by click the  icon in the right hand side of the web page. By default, a file named like BoltzTrap2Y.ipynb will be saved in your Downloands folder in the case of Windows computer. After that, go back to this page and run the codes using the free google notebook server by


	clicking the link jupyter notebook google [https://colab.research.google.com/notebooks/intro.ipynb] followed by uploading the downloaded code through clicking file->upload in the jupyter notebook google page.


	clicking Runtime->Run all in the jupyter notebook google page




For more details, see the secction Example by Jupyter Notebook.




Change logs in coding

As a numerical demonstration, we have implimented the computational procedure by python code through forking the BoltzTraP2 [https://gitlab.com/sousaw/BoltzTraP2] by @georg.madsen et al. The major extensions, which at present are only made for constant doping calculations, are briefed below:


	revised interface.py


	extended bandlib.py into bandlibEXT.py.


	extended io.py into ioEXT.py


	added remesh.py for calculations in low temperature (meshed increased to ~100,000 so that the calculated results can be good until a few of 10 K).


	improved the computational efficiency on the calculations of the chemical potential of electrons (Fermi levels)


	added plotpng.py for figure plot.










            

          

      

      

    

  

    
      
          
            
  
Theoretical Brief

In this section, we summarize the formualtions for the Seebeck coefficient and Lorenz Number between the Boltzmann transport equation (BTE) and the proposed thermodynamic equation (TE). For more details, see the section of Penn State’s work


	Seebeck coefficient


\[S_{BTE} = - \frac{1}{eT}\int_{}^{}\frac{\int_{}^{}{\left\lbrack \varepsilon - \mu \right\rbrack f(1 - f)\mathbf{X}\left( \varepsilon \right)d\varepsilon}}{\int_{}^{}{f(1 - f)\mathbf{X}\left( \varepsilon \right)d\varepsilon}}\]





vs



\[S_{TE} = - \frac{1}{eT}\int_{}^{}\frac{\int_{}^{}{\left\lbrack \varepsilon - \mu \right\rbrack f(1 - f)D\left( \varepsilon \right)d\varepsilon}}{\int_{}^{}{f(1 - f)D\left( \varepsilon \right)d\varepsilon}}\]





	Lorenz number


\[L_{BTE} = \frac{1}{e^{2}T^{2}}\frac{\left\{ \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu \right\rbrack^{2}}\mathbf{X}\left( \varepsilon \right)d\varepsilon - \frac{\left\lbrack \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu \right\rbrack\mathbf{X}\left( \varepsilon \right)d\varepsilon} \right\rbrack^{2}}{\int_{}^{}{f\left( 1 - f \right)\mathbf{X}\left( \varepsilon \right)d\varepsilon}} \right\}}{\int_{}^{}{f\left( 1 - f \right)\mathbf{X}\left( \varepsilon \right)d\varepsilon}}\]





vs



\[L_{TE} = \frac{1}{e^{2}T^{2}}\frac{\left\{ \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu \right\rbrack^{2}}D\left( \varepsilon \right)d\varepsilon - \frac{\left\lbrack \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu \right\rbrack D(\varepsilon)d\varepsilon} \right\rbrack^{2}}{\int_{}^{}{f\left( 1 - f \right)D(\varepsilon)d\varepsilon}} \right\}}{\int_{}^{}{f\left( 1 - f \right)D(\varepsilon)d\varepsilon}};\ or\]


\[L_{TE} = \frac{k_{B}}{e^{2}}\frac{C_{el}}{n_{eff}}\]





	Relation between \(\mathbf{X}\left( \varepsilon \right)\) and \(D\left( \varepsilon \right)\)




\(\mathbf{X}\left( \varepsilon \right)\) in the equation for \(S_{BTE}\) or \(L_{BTE}\) for the Boltzmann transport theory is called the transport distribution function [see Madsen, CPC 231, 140 (2018);
Scheidemantel, PRB 68, 125210(2003)]



\[X^{\alpha\beta}\left( \varepsilon \right) = \frac{e^{2}}{V}\int_{}^{}{\sum_{i}^{}{v_{i}^{\alpha}\mathbf{(}\mathbf{k})v_{i}^{\beta}\mathbf{(}\mathbf{k}\mathbf{)}}\tau_{i,\mathbf{k}}\delta(\varepsilon - \varepsilon_{i}\mathbf{(}\mathbf{k}\mathbf{)})\frac{d\mathbf{k}}{8\pi^{3}}}\]




where the electron group velocity is



\[v_{i}^{\alpha}\mathbf{(}\mathbf{k}\mathbf{) =}\frac{\mathbf{\partial}\varepsilon_{i}\mathbf{(}\mathbf{k}\mathbf{)}}{\mathbf{\partial}k^{\mathbf{\alpha}}}\]




and \(\tau_{i,\mathbf{k}}\) is called the relaxation time.



\[D\left( \varepsilon \right) = \frac{1}{V}\int_{}^{}{\sum_{i}^{}{\delta(\varepsilon - \varepsilon_{i}\mathbf{(}\mathbf{k}))}\frac{d\mathbf{k}}{8\pi^{3}}}\]




\(D\left( \varepsilon \right)\) in the equation for \(S_{TE}\) or \(L_{TE}\) for the thermodynamic theory [https://doi.org/10.1103/PhysRevB.98.224101] represents the electron density of states


	It is observed that when the transport distribution function, \(\mathbf{X}\left( \varepsilon \right)\), is replaced by the the electron density of states, \(D\left( \varepsilon \right)\), the expressions for the Seebeck coefficient and Lorenz number due to Boltzmann transport equation completely reduced to those due to thermodynamic theory.








            

          

      

      

    

  

    
      
          
            
  
Installation

It is recommended to install the package under the anaconda [https://docs.anaconda.com/anaconda/install/] environment. Under the anaconda prompt, one can create a preferred directory and then run


git clone https://gitlab.com/yiwang62/BoltzTraP2.git
cd BoltzTraP2/
setenv CC g++








Edit the setup.py file, depending on your CC environment, use



required_compile_flags = [“-std=c++11”], or

required_compile_flags = [“-std=c++0x”]






Last, run


pip install -e . #for develop version (recomended)
#if failed, try
python setup.py install #or
python setup.py develop #for develop version (recomended)












            

          

      

      

    

  

    
      
          
            
  
Basics to run BoltzTraP2

Once intalled, one can try btp2 -h for available command line options. This fork of BoltzTraP2 is mostly focused at the constant doping case, try btp2 dope -h for more details.

For the kinetic calculations, all the commands follow those from BoltzTraP2. For more details, check out the [BoltzTraP2 tutorial](https://gitlab.com/sousaw/BoltzTraP2/-/wikis/tutorial).


Example by Jupyter Notebook

Jupyter Notebook (previously IPython Notebook) files are used for interactive computing in many fields and contain a complete record of the user’s sessions and include code, narrative text, equations, and rich output.

The advantage to use Jupyter Notebook is that it makes very easy for a reseracher lacking of experience software installation. For example, it takes quite significant time to figure this or that kind installation problem, even for the installation of the upstream package of this work, BoltzTraP2, in cmake and g++ settings

We have prepared an extensive jupyter notebook script which can be downloaded by

1. clicking the link BoltzTrap2Y.ipynb [https://gitlab.com/yiwang62/BoltzTraP2/-/blob/20210126/BoltzTrap2Y.ipynb] followed by click the [image: download]
icon in the right hand side of the web page. By default, a file named like BoltzTrap2Y.ipynb will be saved in your Downloands folder in the case of Windows computer. After that, go back to this page and run the codes using the free google notebook server by


	clicking the link jupyter notebook google [https://colab.research.google.com/notebooks/intro.ipynb] followed by uploading the downloaded code through clicking file->upload in the jupyter notebook google page.


	last, you can do one-click to run the code by clicking Runtime->Run all in the jupyter notebook google page










            

          

      

      

    

  

    
      
          
            
  
BoltzTraP2

[image: _images/boltztrap_200x58.png]BoltzTraP Logo [https://www.imc.tuwien.ac.at//forschungsbereich_theoretische_chemie/forschungsgruppen/prof_dr_gkh_madsen_theoretical_materials_chemistry/boltztrap/]
[image: _images/TU-Logo.gif]TU Wien Logo [https://www.tuwien.ac.at/]

BoltzTraP2 is a modern implementation of the smoothed Fourier interpolation algorithm [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.38.2721] for electronic bands that formed the base of the original and widely used BoltzTraP [http://www.sciencedirect.com/science/article/pii/S0010465506001305] code. One of the most typical uses of BoltzTraP is the calculation of thermoelectric transport coefficients as functions of temperature and chemical potential in the rigid-band picture. However, many other features are available, including 3D plots of Fermi surfaces based on the reconstructed bands. For more information, check out the BoltzTraP2 tutorial [https://gitlab.com/sousaw/BoltzTraP2/-/wikis/tutorial].


Prerequisites

BoltzTraP2 is a Python module, with a small performance-critical portion written in C++ and Cython [http://cython.org/]. BoltzTraP2’s runtime requirements are Python version 3.5 or higher, and the Python libraries NumPy [http://www.numpy.org/], SciPy [https://www.scipy.org/], matplotlib [https://matplotlib.org/], spglib [https://atztogo.github.io/spglib/], NetCDF4 [https://github.com/Unidata/netcdf4-python] and ASE [https://wiki.fysik.dtu.dk/ase/]. All of them can be easily obtained from the Python Package Index [https://pypi.python.org/pypi] (PyPI), using tools such as pip. They may also be bundled with Python distributions aimed at scientists, like Anaconda [https://anaconda.org/], and with a number of Linux distributions. If pip is used to install BoltzTraP2, dependencies should be resolved automatically.

If available, BoltzTraP2 will also make use of pyFFTW [http://hgomersall.github.io/pyFFTW/] (for faster Fourier transforms), colorama [https://github.com/tartley/colorama] (to colorize some console output) and VTK [https://www.vtk.org/] (to generate 3D representations). Those packages are not required, but they are recommended to be able to access the full functionality of BoltzTraP2.

Furthermore, compiling BoltzTraP2 from its sources requires a C++ compiler, and the development headers and libraries for Python. Cython is not required for a regular compilation.




Compiling and install BoltzTraP2

The easiest way to get BoltzTraP2 is to run:

$ pip install BoltzTraP2





This should take care of downloading and installing the dependencies as well.

Users installing from source must install the dependencies first and then run:

$ python setup.py install





from the source directory. For finer-grained control, please see the output of these commands:

$ python setup.py --help
$ python setup.py --help-commands
$ python setup.py install --help





The BoltzTraP2 installer supports

$ python setup.py develop





which install the module through a set of symbolic links to the source directory, allowing users to immediately tests the effects of their changes to the code.




Running the tests

BoltzTraP2 comes with a comprehensive set of unit and integration tests of its core functionality. To run those, install pytest [https://docs.pytest.org] (also available through pip), change to the source directory and use the command

$ pytest -v tests











            

          

      

      

    

  

    
      
          
            
  
Utilities


Mixing two phases

The mechanism to mix the DOSs between two structures and then calculate the chemical potential is given below


	shift the DOS using Fermi energy as zero






\[ \begin{align}\begin{aligned}D_{AFM - b}^{'}\left( \varepsilon \right) = D_{AFM - b}\left( \varepsilon + \varepsilon_{F}^{AFM - b} \right)\\D_{AFM - a}^{'}\left( \varepsilon \right) = D_{AFM - a}\left( \varepsilon + \varepsilon_{F}^{AFM - a} \right)\end{aligned}\end{align} \]





	mix the DOSs






\[D_{\text{mix}}^{'}\left( \varepsilon \right) = (1 - x)*D_{AFM - b}^{'}\left( \varepsilon \right)+{x*D}_{AFM - a}^{'}\left( \varepsilon \right)\]





	calculate the chemical potential of electrons






\[\int_{- \infty}^{\infty}{\text{fD}_{\text{mix}}^{'}\left( \varepsilon \right)\text{dε}} = \int_{- \infty}^{0}{D_{\text{mix}}^{'}\left( \varepsilon \right)\text{dε}}\]




under Fermi distribution



\[\mathbf{f} = \frac{1}{e^{\frac{\varepsilon - \mu}{k_{B}T}} + 1}\]




Usage:


python utilities/dosmixAPI.py -d0 dir0/ -d1 dir1/ -nC 11 -nT 101








The output to the text file thermo.out contains data as  functions of phase compostion x and T. These data can be plotted following the section Example by Jupyter Notebook







            

          

      

      

    

  

    
      
          
            
  
Penn State’s work


Thermodynamic respect of certain thermoelectric quantities

This branch is partially inspired from our recent understanding on the thermoelectric effects. The first is on the thermodynamic understing of the Seebeck coefficent [https://doi.org/10.1103/PhysRevB.98.224101] which shows that:

Thermoelectric effects, measured by the Seebeck coefficients, refer to the phenomena in which a temperature difference or gradient imposed across a thermoelectric material induces an electrical potential difference or gradient, and vice versa, enabling the direct conversion of thermal and electric energies. All existing first-principles calculations of Seebeck coefficients have been based on the Boltzmann kinetic transport theory. In this work, we present a fundamentally different method for the first-principles calculations of Seebeck coefficients without using any assumptions on the electron scattering mechanism, in contrast to the traditional theory by Cutler and Mott that shows the dependence of the Seebeck coefficient on the scattering mechanisms. It is shown that the Seebeck coefficient is a well-defined thermodynamic quantity that can be determined from the change in the chemical potential of electrons induced by the temperature change and thus can be computed solely based on the electronic density of states through first-principles calculations at different temperatures. The proposed approach is demonstrated using the prototype PbTe and SnSe thermoelectric materials.

The second is Lorenz Number and Electronic Thermoelectric Figure of Merit: Thermodynamics and Direct DFT Calculations [https://arxiv.org/abs/2010.00664] which shows that:

The Lorenz number (L) contained in the Wiedemann-Franz law represents the ratio of two kinetic parameters of electronic charge carriers: the electronic contribution to the thermal conductivity (K_el) and the electrical conductivity (sigma), and can be expressed as LT=K_el/sigma where T is temperature. We demonstrate that the Lorenz number simply equals to the ratio of two thermodynamic quantities: the electronic heat capacity (c_el) and the electrochemical capacitance (c_N) through LT=c_el/c_N , a purely thermodynamic quantity, and thus it can be calculated solely based on the electron density of states of a material. It is shown that our thermodynamic formulation for the Lorenz number leads to: i) the well-known Sommerfeld value L=pi^2/3(k_B/e)^2 at the low temperature limit, ii) the Drude value L=3/2(k_B/e)^2 at the high temperature limit with the free electron gas model, and iii) possible higher values than the Sommerfeld limit for semiconductors. It is also demonstrated that the purely electronic contribution to the thermoelectric figure-of-merit can be directly computed using high-throughput DFT calculations without resorting to the computationally more expensive Boltzmann transport theory to the electronic thermal conductivity and electrical conductivity.




Revised output for the dope module

For the interpolation.dope.trace file, the collumns are made of



collum 1, \(\mu-E_f(eV)\) - electron chemical potential

collum 2, \(T(K)\) - temperature

collum 3, \(N(e/uc)\) - number of charge carries due to doping

collum 4, \(DOS(ef)[1/(Ha*uc)]\) -

collum 5, \(S(V/K)\) - Seebeck coefficients by BTE theory

collum 6, \(\sigma/tau0[1/(ohm*m*s)]\) - trace of electrical conductivity

collum 7, \(RH[m**3/C]\) -

collum 8, \(kappae/tau0[W/(m*K*s)]\) -

collum 9, \(C_{\mu}[J/(mole-atom*K)]\) - constant voltage heat capacity

collum 10, \(chi[m**3/mol]\) -

collum 11, \(C_{el}[J/(mole-atom*K)]\) - heat capacity with constant number of eletrons

collum 12, \(S_e(V/K)\) - Seebeck coefficients by thermodynamic understanding, Phys. Rev. B, 98 (2018) 224101.

collum 13, \(n_{eff}(e/cm^3)\) - effective carrier concentration

collum 14, \(L(W*ohm/K**2)\) - Lorenz number by thermodynamic understanding

collum 15, \(\sigma_h\) - hole electrical conductivity

collum 16, \(\sigma_e\) - electon electrical conductivity concentration

collum 17, \(N_h\) - testing

collum 18, \(N_e\) - testing

collum 19, \(n_h(e/cm^3)\) - hole carrier concentration

collum 20, \(n_e(e/cm^3)\) - electron carrier









Thermodynamic formulations


	Fermi distribution


\[f = \frac{1}{e^{\frac{\varepsilon - \mu}{k_{B}T}} + 1}\]





where \(\mu\) is chemical potential, also called Fermi level. This quantity is temperature dependent, to be determined by the
number of electrons in the system as



\[N_{el} = \int_{- \infty}^{+ \infty}{fD\left( \varepsilon \right)d\varepsilon} = \int_{- \infty}^{\varepsilon_{F}}{D\left( \varepsilon \right)d\varepsilon}\]




where \(D\left( \varepsilon \right)\) is the electron density of states defined as



\[D\left( \varepsilon \right) = \frac{1}{V}\int_{}^{}{\sum_{i}^{}{\delta(\varepsilon - \varepsilon_{i}\mathbf{(}\mathbf{k}))}\frac{d\mathbf{k}}{8\pi^{3}}}\]





	Formulations on the thermodynamic theory on the electronic contribution under constant doping conditions






	internal energy






\[E_{el}\left( T \right) = \int_{}^{}{fD\left( \varepsilon \right)d\varepsilon} - \int_{- \infty}^{\varepsilon_{F}}{D\left( \varepsilon \right)d\varepsilon}\]





	entropy






\[S_{el} = {- k}_{B}\int_{}^{}{\left\lbrack flnf + \left( 1 - f \right)\ln\left( 1 - f \right) \right\rbrack D\left( \varepsilon \right)d\varepsilon}\]





	free energy






\[F_{el}\left( T \right) = E_{el}\left( T \right) - TS_{el}\]





	heat capacity






\[C_{el} = \frac{1}{k_{B}T^{2}}\left\{ \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu\left( T \right) \right\rbrack^{2}}D\left( \varepsilon \right)d\varepsilon - \frac{\left\lbrack \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu\left( T \right) \right\rbrack D(\varepsilon)d\varepsilon} \right\rbrack^{2}}{\int_{}^{}{f\left( 1 - f \right)D(\varepsilon)d\varepsilon}} \right\}\]








	Heat capacity under constant voltage condition


\[C_{\mu} = T\left( \frac{\partial S_{el}}{\partial T} \right)_{\mu}\mathrm{=}\frac{1}{k_{B}T^{2}}\left\{ \int_{}^{}{f\left( 1 - f \right)\left\lbrack \varepsilon - \mu\left( T \right) \right\rbrack^{2}}D\left( \varepsilon \right)d\varepsilon \right\}\]





which is related to its constant doping countpart by



\[C_{\mu} = C_{el} +  \frac{n_{eff}e^{2}}{k_{B}}S_{e}^{2}\]




where the effective carrier density is defined as



\[n_{eff} = \int_{- \infty}^{\infty}{f(1 - f)\ D\left( \varepsilon \right)d\varepsilon}\]




while the Seebeck coefficient is thermodynamically determined by



\[S_{e} = - \frac{1}{en_{eff}T}\int_{- \infty}^{\infty}{\left( \varepsilon - \mu \right)\left( 1 - f \right)fD(\varepsilon)d\varepsilon}\]




Finally, the Lorenz Number can thermodynamicallu be calculated by



\[L = \frac{k_{B}}{e^{2}}\frac{C_{el}}{n_{eff}}\]







Electrical conductivity



\[\mathbf{\sigma} = \frac{1}{k_{B}T}\int_{- \infty}^{\infty}{f(1 - f)\ \mathbf{X}\left( \varepsilon \right)d\varepsilon}\]




where \(\mathbf{X}\) is called sransport distribution function, see Madsen, CPC 231}, 140 (2018) and Scheidemantel, PRB 68, 125210(2003)



\[X^{\alpha\beta}\left( \varepsilon \right) = \frac{e^{2}}{V}\int_{}^{}{\sum_{i}^{}{v_{i}^{\alpha}\mathbf{(}\mathbf{k})v_{i}^{\beta}\mathbf{(}\mathbf{k}\mathbf{)}}\tau_{i,\mathbf{k}}\delta(\varepsilon - \varepsilon_{i}\mathbf{(}\mathbf{k}\mathbf{)})\frac{d\mathbf{k}}{8\pi^{3}}}\]




where   \(\tau_{i,\mathbf{k}}\) is relaxation time and the electron group velocity is



\[v_{i}^{\alpha}\mathbf{(}\mathbf{k}\mathbf{) =}\frac{\mathbf{\partial}\varepsilon_{i}\mathbf{(}\mathbf{k}\mathbf{)}}{\mathbf{\partial}k^{\mathbf{\alpha}}}\]





	effective carrier mobility


\[\mathbf{M}\mathbf{=}\frac{\mathbf{\sigma}}{n_{eff}e}\]








Separation of electron and hole contributions


	electron carrier concentration


\[n = \int_{\varepsilon_{F}}^{+ \infty}{fDd\varepsilon}\]



	hole carrier concentration


\[p = \int_{- \infty}^{\varepsilon_{F}}{fDd\varepsilon}\]



	electrical conductivity


\[ \begin{align}\begin{aligned}\mathbf{\sigma}_{h} = \frac{1}{k_{B}T}\int_{- \infty}^{\varepsilon_{F}}{f(1 - f)\ \mathbf{X}\left( \varepsilon \right)d\varepsilon}\\\mathbf{\sigma}_{e} = \frac{1}{k_{B}T}\int_{\varepsilon_{F}}^{\infty}{f(1 - f)\ \mathbf{X}\left( \varepsilon \right)d\varepsilon}\end{aligned}\end{align} \]



	mobility


\[ \begin{align}\begin{aligned}\mathbf{M}_{h} = \frac{\mathbf{\sigma}_{h}}{ep}\\\mathbf{M}_{e} = \frac{\mathbf{\sigma}_{e}}{en}\end{aligned}\end{align} \]











            

          

      

      

    

  

    
      
          
            
  
Changelog


0.0 (2021-01-27)

(Contributor: @YiWang)


	Change List:






	Changes are made only for constant doping calculations, partially according to Phys. Rev. B, 98 (2018) 224101. The major works include:


	revised interface.py


	extended bandlib.py into bandlibEXT.py.


	extended io.py into ioEXT.py


	added remesh.py for calculations in low temperature (meshed increased to ~100,000.


	improved the computational efficiency on the calculations of the chemical potential of electrons (Fermi levels). See line 332-335 in bandlibEXT.py.


	added plotpng.py for figure plot.
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